"Open Source 5G: Transforming Robotics and IOT for the Future"

Ajay Lotan Thakur

Cloud Software Architect @ Intel Corp

TST Member Aether (Private 5G) Project Linux Foundation

British Computer Society Fellow

Agenda

- Overview of 5G
- Connecting dot with robotics
- 5G Broad use cases
- 5G Characteristics
- Overview of Open Source 5G (Aether)
- 5G Adoption Challenges
- 5G vs Wi-fi
- Q & A

5G Broad Usage

Enhanced Mobile Broadband (eMBB)

- High Throughput
- Low mobility
- E.g., streaming, AR/VR

Massive Machine Type Communication (mMTC)

- Low Battery Life
- Extended Coverage
- Low Cost
- Large # of devices
- E.g., Mining/Industry Sensors, smart City

Ultra-Reliable and Low Latency Communication (URLLC)

- Extreme Reliability
- Low latency
- E.g., mission critical application, drones, connected cars

5G Network Subsystem

Next Generation Radio Access Network (NG-RAN)

- Cellular network consists of two main subsystems: the *Radio Access Network (RAN)* and the *Mobile Core*
- The RAN manages the radio spectrum, making sure it is used efficiently and meets the quality-ofservice requirements of every user
- All IP Network once packet received in RAN Network
- RAN, 5GC open source projects
- Private 5G un-Licensed spectrum available in many countries to run private network. In US CBRS band

magma

5G Network Subsystem + non3gpp Access

- Non-3GPP Interworking Function (N3IWF)
- Can connect Wi-fi Devices as well.
- Management of Private 5G + Ease of Wi-fi

Wifi Gateway

Robots using 5G Network

- Robot controlled by Operator
- Robot need connectivity to access applications, upload data to servers, etc.
- 5G gives low latency, high bandwidth, massive scalability

5G Enhancing Real-Time Communication

- Important factors
 - Low latency
 - Critical for real time applications e.g. autonomous vehicles, robotic surgery
 - High bandwidth
 - Transmission of high amount of data quickly
 - Simultaneous video steaming or large amount of data from sensors
 - e.g multiple robots doing independent tasks
 - Accurate positioning
 - 5G helps in getting accurate position of the devices
 - Collaborative operations
 - Devices can talk to each other to do collaborative work

Enhancing Real-Time Communication Examples

- Examples in real-time robotics:
 - **Autonomous vehicles:** 5G enables self-driving cars to communicate with infrastructure, other vehicles, and pedestrians, ensuring safe and efficient operation.
 - **Teleoperated robots:** Low latency is essential for a responsive control experience, allowing the operator to feel like they are directly controlling the robot. High bandwidth is needed for transmitting high-quality video and sensor data.
 - Industrial automation: Low latency is crucial for precise control of robotic arms and other equipment, ensuring accurate and efficient manufacturing processes. High bandwidth is needed for data-intensive tasks like quality inspection and machine learning.

Enhancing Real-Time Communication Examples contd ...

- Examples in real-time robotics:
 - **Industrial robots:** 5G can improve the precision and efficiency of industrial robots by enabling real-time data exchange and control.
 - **Drone delivery:** 5G supports the reliable and efficient operation of drones for package delivery and other applications.
- In summary
 - low latency and high bandwidth are essential for real-time robotics, enabling timely data transmission, accurate control, and efficient operation.
 - 5G technology provides the necessary infrastructure for autonomous operation, precise control in robotic systems, enabling a wide range of applications across various industries.

5G in IoT: Massive Device Connectivity

- Massive device connectivity
- Examples of 5G-enabled IoT applications:
 - Smart cities

•

- Industrial IoT
- Connected agriculture
- Autonomous vehicles

Overview of Open-Source 5G

- You can operate you own network <u>on unlicensed band (CBRS band in USA)</u>
- ^o Many open-source options available RAN, Mobile CORE, SIM card writer
- Aether Private 5G solution started by Open Networking Foundation (now part of Linux Foundation)
- Started as 3 year \$30 million project funded by DARPA and now actively maintained by community
 - Primary partners in the project Stanford, Princeton, Cornell University
 - Later many universities joined the project as contributor & project user e.g. Purdue Univesity
 - o Other research Organizations using Aether for their research e.g. IOS-MCN, CPQD
 - o Canonical (Ubuntu publisher) has made Aether available through charm-sd-core.
- Open-source benefits: flexibility, cost-effectiveness, and opportunity for innovation
- Sample Applications
 - Person detection Application
 - Rouge user removal

5G Network Subsystem – Network Exposure Function

5G Network Subsystem – Network Slice

- Different Network for each slice
- APIs to create Slice
- Different Bandwidth assignment per slice
- Application Isolation Security measure per Slice
- Devices can talk to each other
- Example smart factories where robots and IoT devices work in tandem

Open-Source 5G Platforms: Aether

. Join hands if you are

- . Interested in learning 5G
- . Motivated to contribute to Open Source 5G Core
- . Motivated to carry out research on 5G network
- · Motivated to learn Cloud Native System Designs

. <u>Web - https://aetherproject.org</u>

Github - https://github.com/omec-project

5G Adoption – Challenges & Consideration

- **Cost:** The deployment of 5G infrastructure can be expensive
- Interoperability: Ensuring compatibility between different 5G devices and networks is important for the widespread adoption of IoT applications.
- 5G Network Operation needs specialized skills
- Despite these challenges, 5G is poised to transform the IoT landscape by **enabling new and innovative applications** that were previously impractical or impossible.

Is Wi-fi Still Used in Robotics and IoT?

- Factors to consider
 - Speed
 - Range
 - Use cases
 - Dual Connection
 - Quality of Service
 - Deployment Scale
- Note Users can select Wi-fi or 5G/6G depending on their use case.

Wrap-Up

- $_{\circ}$ Sweet spot
 - Industry automation + 5G + IoT + Robotics + AI/ML
 - Open Source + Private 5G
- ^o There are opportunities for innovation
 - New applications can be written per use case

Thank you ! Any Questions?

